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This paper presents developmental learning on a Individuality and Object Constancy (24-36
humanoid robot from human-robot interactions. We months) Defined by the consolidation of individ-
consider in particular teaching humanoids as children uality. and a clear separation between objects
during the child's Separation and Individuation de- and himself. Towards the end, the child becomes
velopmental phase (Mahler, 1979). Cognitive devel- aware of object constancy.
opment during this phase is characterized both by
the child's dependence on her mother for learning Therefore. during the Separation and Individua-
while becoming awareness of her own individuality, tion phase, the child learns to recognize himself as
and by self-exploration of her physical surroundings. an individual, and his mirror image as belonging
We propose a learning framework for a humanoid to himself. He learns also about its surrounding
robot inspired on such cognitive development, world structure - about probable places to find fa-

miliar objects (such as toys) or furniture items. In
1. Introduction addition, he starts to identify scenes - such as his

own bedroom and living-room. And children be-
This paper describes work which takes inspiration on come increasingly aware (and curious) of the outside
Mahler's child development theory (Mahler. 1979). world (Lacerda et al., 2000). This paper describes
Special emphasis is put on the child's Separation and the implementation of these cognitive milestones on
Individuation developmental phase (Mahler, 1979) - the humanoid robot. Cog, placing special emphasis
during which the child eventually separates from on developmental object perception (Johnson, 2002)
his mother bound and embraces the external world, during the Separation and Individuation stage.
Mahler's theory has influences by movements such The child's mother plays an essential
as the Ego's Developmental Psychology and Exper- role (Gonzalez-mena and Widmeyer, 1997) in
imental Psychology, from Freud. Piaget and others. guiding the child through this learning process.
According to her theory, the normal development of a Aiming at teaching humanoid robots as children
child during the Separation and Individuation phase during this stage. the child's mother role will be
is divided into four sub-phases, following the Epige- attributed to a human tutor/caregiver. Therefore, a
netic Principle - as each stage progresses. it sets the human-centered approach is presented to facilitate
foundation for the next stages: the robot's perception and learning, while showing

the benefits that result from introducing humans in
Differentiation (5-9 months) The first sub-phase, the robot's learning ioop.

marked by a decrease of the infant's total depen-

dency on his mother as the former crawls further 2. Learning on the Autistic and Sym-
away. The infant starts to realize his own individ-
uality and separateness due to the development biotic Phases
of the entire sensory apparatus and therefore a This section reviews shortly the methodology we
growing awareness developed for robot interactions motivated by in-

Practicing (9.10-18 months) Sub-phase character- fant's simple learning mechanisms in Mahler's autis-
ized by the child's active locomotion and explo- tic and Symbiotic developmental phases, which an-
ration of his surroundings, together with the nar- tecede the Separation and Individuation phase. In
cissist exploration of his own functions and body the autistic phase (from birth to 4 weeks old),

the newborn is most of the time in a sleeping
Re-approximation (15-24 months) Child has an state. awakening to eat or satisfy other necessi-

egocentric view of the world during this phase, in ties (Mahler. 1979, Muir and Slater, 2000). His mo-
which he also approximates again to his mother. tor skills consist mainly of primitive reflexes until
World expands as new viewing angles are avail- the end of this phase (Michel and Moore, 1995). To-
able from the child's erect walking wards the Symbiotic phase (until 4-5 months), the
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infants attention is often dropped to objects in-
der oscillatory motions, or to abrupt changes of mo-
tion, such as throwing an object. Baby toys are of-
ten used in a repetitive manner - consider rattles,
car/hammer toys, etc. This repetition can poten-
tially aid a robot to perceive these objects robustly.
Playing with toys might also involve discontinuous
motions (for instance, grabbing a rattle results in a
sharp velocity discontinuity upon contact).

This motivated the design of algorithms which im-
plement the detection of events with such character-
istics. Moving image regions that change velocity ei- Figure 1: a) Object segmentations extracted from human
ther periodically, or abruptly under contact produce created events b) Object segmentations extracted from
visual event candidates. These algorithms, which are robot created events c) robot executes a simple learned
presented in detail by (Arsenio, 2003), identify such task (waving), and associates the sound to the movement
events at multiple spatial/frequency resolutions. Ob- of its own body d) top: sequence of images extracted from
ject Segmentation, a fundamental problem in corn- a poking event; bottom: object and actuator segmenta-
puter vision, is then dealt with by detecting and in- tion from a poking event created by the robot.
terpreting natural human/robot task behavior from
discontinuous events - such as tapping, waving, shak-
ing, poking, grabbing/dropping or throwing objects among its own senses (Section 3.); to control and
- or from periodic events - such as waving or shaking integrate situational cues from its surrounding world
an object (Arsenio, 2003, Arsenio et al., 2003). (Section 4.); and to learn about out-of-reach objects

An active segmentation technique developed re- and the different representations in which they
cently (Fitzpatrick, 2003) relies on poking objects might appear (Section 5.). Special emphasis will
with a robot actuator. This strategy operates on therefore be placed on social learning along a child's
first-person perspectives of the world: the robot physical topological spaces, as shown in Figure 2.
watching its own motion. However, it is not suit-
able for segmenting objects based on external cues.
We would like therefore to transfer skills from hu-
mans to the robot, so that external information can
be incorporated to enable autonomous acquisition of 2
knowledge by the robot, by exploiting shared world
perspectives between a cooperative human and the
robot. Such developmental approach for skill trans-
fer is presented by (Arsenio, 2004a). By observing
a human interacting with objects (for instance, wav-
ing or poking them). the robot builds Hybrid Markov
Models that model the task, and is then able to act
by itself on (un)known objects to segregate them
from the background, as shown in Figure 1.

The child's Separation and Individuation Figure 2: Developmental learning during the child's Sep-
phase (Mahler, 1979) is marked by the separa- aration and Individuation phase will be described along
tion of the child from his mother as a different three different topological spaces: 1) the robot's personal
individual. However, the child still relies heavily space, consisting of itself and familiar, manipulable ob-
on help provided by his mother to understand the jects (Section 3.); 2) its living space, such as a bedroom or
world and even himself through this developmen- living room (Section 4.); and 3) its outside, unreachable
tal phase (Gonzalez-mena and Widmeyer, 1997). world, such as the image of a bear on a forest (Section 5.).
Indeed, the child is part of a structured world
that includes the immediate emotional (for
robot emotions, not covered by this paper, 3. Learning about Objects and Itself
see (Breazeal, 2000)), social and physical sur-
roundings (Michel and Moore, 1995). In the This section describes a strategy for a robot to asso-
following sections. social help from a human tutor ciate data from several sources: from its own senses.
will be used to guide the robot through learning to better perceive both itself and objects with which
about its physical surroundings. In particular, this it interacts, and from its senses and information
helping hand will assist the robot to correlate data stored on the world or on the robot's memory.



Information is gathered from a human tutor creat-
ing rhythmic actions, facilitating this way the robot's
perception. This is motivated from a child's mother
role in helping the child to learn about objects and
its own body - by tapping or waving a toy or a child's W I I S 255 255

body part (such as a hand) while annunciating the
name associated to it. or by performing educational
activities, such as drawing or painting.

3.1 Cross-Modal Data Association

Cross-modal data association from the robot's own
senses is briefly described hereafter (for details Figure 3: a) A child and a human playing with a ham-
see (Fitzpatrick and Arsenio, 2004)). This is an im- mer, which bangs in a table, producing a distinctive
portant capability for a humanoid robot, so that it dio signal. b) A human moves a car repetitively for-
can better perceive itself and objects with which it ward/backward producing sound in each direction, which
interacts. In children, such capability appears with is matched to the visual trajectory. The sound energy has
the development of the sensory apparatus on the first two peaks per visual period, since the sound of rolling is
differentiation sub-phase. loudest during the two moments of high velocity motion

Due to physical constraints, the set of sounds that between turning points in the car's trajectory (because
can be generated by manipulating an object is often of mechanical rubbing). c) top: tracking an oscillatory
quite small. For toys which are suited to one specific instrument; down: image of object segmentation and dis-
kind of manipulation - as rattles encourage shaking - play of a detected visual/sound matching.
there is even more structure to the sound they gener-
ate (Fitzpatrick and Arsenio, 2004). When sound is
produced through motion for such objects the audio
signal is highly correlated both with the motion of
the object and the tools' identity. Therefore, the spa-
tial trajectory can be applied to extract visual and
audio features - patches of pixels. and sound fre-
quency bands - that are associated with the object
(see Figure 3). which enables the robot, to map the
visual appearance of objects manipulated by humans Figure 4: a) Child and robot looking at a mirror, asso-
or itself to the sound they produce. ciating their image to their body (image of robot/sound

Proprioceptive data is a sensorial modality very association shown amplified for the robot) b) Visual seg-
important to control the mechanical device, as mentations organized according to the robot's body parts
well as to provide workspace information (such for which they were matched.
as the robot's gaze direction). But it is also
very useful to infer identity about the robotic
self (Fitzpatrick and Arsenio, 2004) (for instance, by 3.2 Object Recognition
having the robot recognize itself on a mirror). Chil-
dren become able to self-recognize their image on a Sensorial data strongly correlated to proprioceptive
mirror during the practicing sub-phase, which marks data is therefore labelled with the correspondent
an important developmental step towards the child robot's body part. However. it is necessary to de-
individuality. On a humanoid robot. large corre- velop a recognition scheme for objects other than
lations of a particular robot's limb with data from robot's body parts, which enables object recognition
other sensorial inputs indicates a link between such under different contexts.
sensing modality to that moving body part (which The object recognition algorithm consists of three
generated a sound. or which corresponds to a given independent algorithms. Each recognizer operates
visual template, as shown in Figure 4). Therefore, along orthogonal directions to the others over the in-
the binding algorithm was extended to account for put space (Arsenio, 2004b). This approach offers the
proprioceptive data, which is matched to both vi- possibility of priming specific information - which
sual and audio signals. Such an approach enables will be shown a property of paramount importance -
not only the identification of the robot's own acous- such as searching for a specific object feature (color.
tic rhythms. but also the visual recognition of the shape or luminance) independently of the others. For
robot's mirror image, as shown in Figure 4 (this is an instance, the recognizer may focus the search on a
important milestone on the development of a child's specific color or sets of colors, or look into both de-
theory of mind (Baron-Cohen, 1995)). sired shapes and luminance (Arsenio, 2004b):



Color. Input features consist of groups of connected and from an algorithm that selectively attends to the
regions with similar color human actuator for the extraction of periodic signals

Luminance. Input space consists of groups of con- from the trajectory of oscillating skin blobs.
nected regions with similar luminance Whenever a repetitive trajectory is detected from

Shape. A Hough transform is applied to a contour any of these parallel processes, it is partitioned into

image (from a Canny edge detector). Line orien- a collection of trajectories, being each element of

tation is determined using Sobel masks. Pairs of such collection described by the trajectory points be-

ethen used as input features tween two zero velocity points with equal sign on a
neighborhood (similarly to the partitioning process

Geometric hashing is a rather useful technique described in (Fitzpatrick and Arsenio, 2004)). As
for high-speed performance. In this method, in- shown in Figure 6, the object recognition algorithm
variants (or quasi-invariants) are computed from is then applied to extract correlations between these
training data in model images, and then stored sensorial signals perceived from the world and geo-
in hash tables. Recognition consists of accessing metric shapes present in such world, or on the robot
and counting the contents of hash buckets. An object database, as follows:
Adaptive Hash table (Arsenio, 2004b) (a hash table
with variable-size buckets) was implemented to store 1. Each partition of the repetitive trajectory is
affine color. luminance and shape invariants (which mapped into a set of oriented lines by applica-
are view-independent for small perspective deforma- tion of the Hough transform.
tions). Figure 5 shows results for each of these in-
put spaces. while experimental results for real objects 2. By applying the recognition scheme previously
will be shown in the next sections. described, trajectory lines are matched to ori-

ented edge lines (from a Canny detector) on

(a) a stationary background.
(b) objects stored in the robot's object recogni-

Ti tion database.

This way. the robot learns object properties not
only through cross-modal data correlations, but

Figure 5: (left) Conjunction searches; Top row, from left also by correlating human gestures and information
to right: normalized color buckets for the original image, stored in the world structure (such as objects with a
with results for a yellow-green query superimposed; and geometric shape) or on its own database.
Luminance buckets of the original image, together with On children, such capabilities evolve according to
query results for a dark-light object; Bottom row: Search the epigenetic principle as they start to move around
for triangles (conjunction of three oriented lines); and the on their physical surroundings, learning about its
target identification (a conjunction of features) among structure. This occurs mainly during the practic-
distracters. (right) Object recognition and location. The ing developmental sub-phase, and towards the re-
train appears under a perspective transformation in a approximation phase the child gets a completely new
computer generated bedroom. Scene lines matched to view of the world from erect walking.
the object are outlined.

4. Learning the World Structure of
the Robot's Physical Surroundings3.3 Learning from Educational Activities

Autonomous agents. such as robots and humans,
A common pattern of early human-child interac- are situated in a dynamic world, full of information
tive communication is through activities that stim- stored on its own structure. For instance, the prob-
ulate the child's brain, such as drawing or paint- ability of a chair being located in front of a table is
ing. Children on the practicing sub-phase of devel- much bigger than that of being located on the ceil-
opment, and older, are able to extract information ing. A robot should place an object where it can
from such activities while they are being performed easily find it - if one places a book on the fridge, he
on-line. This capability motivated the implementa- will hardly find it later!
tion of three parallel processes which receive input This dual perspective on object recognition is an
data from three different sources: from an atten- important milestone for children - not only to be able
tional tracker (Fitzpatrick, 2003), which tracks the to infer the presence of objects based on the scene
attentional focus and is attracted to a new salient context, but also to be able to determine where ob-
stimulus; from a multi-target tracking algorithm, im- jects should be stored based on the probability of
plemented to track simultaneously multiple targets; finding them on that place later on.
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Figure 6: Learning activities, such as drawing on paper tore items on a scene - segmentation samples are also

or boards. Shows a human painting a black circle on shown (right) Furniture image segmentations- on top -

a sheet of paper with a ink can. The circle is painted and depth map - bottom - for a scene in Cog's room.

multiple times. The hand trajectory is shown, together Depth maps are extracted by an active, embodied ap-

with edge lines on the background image matched to such proach that relies on a human to actively change the con-

trajectory. It also shows a human drawing a circle on a text of a scene, so that the human arm diameter is used

sheet of paper with a pen, which is matched into a circle as a reference for extracting relative monocular depth.

drawn previously and stored in the robot's database.

4.2 Learning about Objects in Scenes

Therefore, a statistical framework was developed Children need to be able not only to built environ-
to capture knowledge stored in the robot's surround- ment descriptions for safety locomotion, but also to
ing world. This framework consists of: 1) learning learn the relative probability distribution of objects
3D scenes from cues provided by a human actor; and in a scene - for instance, books are often found on top
2) learning the spatial configuration of objects within of shelves. Therefore. the scene context puts a very
a scene. important constraint on the type of places in which

a certain object might be found. From a humanoid
point of view, contextual selection of the attentional

4.1 Learning about Scenes focus is very important both to constrain the search
space for locating objects (optimizes computational

The world structural information should be exploited resources) and also to determine common places on
in an active manner. A significant amount of con- a scene to drop or store objects such as tools or toys.
textual information may be extracted from a pe- Given the image of an object. its meaning is of-
riodically moving actuator - most often such mo- ten a function of the surrounding context. Con-
tions are from interactions with objects of interest text cues are useful to remove such ambiguity. Ide-
- which can be framed as the problem of estimating ally, contextual features should incorporate the fouc-
p(o0.IvB•, .act!), the probability of finding object n tional constraints faced by people, objects or even
given a set of focal, stationary features v on a neigh- scenes (eg. people cannot fly and offices have
borhood ball B of radius ( centered on location p, and doors). Therefore, functionality plays a more im-
a periodic actuator on such neighborhood with tra- portant role than more ambiguous and variable fea-
jectory points in the set S C B. The Segmentation tures (such as color, which selection might depend
from Demonstration method which will be described on human taste). Functionality constraints have
in Section 5. solves such problem. been previously exploited for multi-modal associa-

The environment surrounding the robot also pro- tion (Fitzpatrick and Arsenio, 2004) and for deter-
vides additional structure that can be learned mining function from motion (Duric et al.. 1995).
through supervised learning techniques. Hence, just to name a few applications.
scenes will be defined as a collection of objects with As such, texture properties seem ap-
an uncertain geometric configuration, each object be- propriate. which led to the selection of
ing within a minimum distance from at least another Wavelets (Strang and Nguyen. 1996) as contex-
object in the scene. Figure 7 presents statistical re- tual features, since they are much faster to compute
suits for segmentations of several furniture items on than Gabor filters and provide a more compact
a scene. Scene descriptions are built by mapping representation. Input monochrome images are
all information about objects (mainly furniture) into transformed using a Daubechies-4 wavelet tree.
egocentric coordinates. Figure 7 also shows both the along 5 depth scales. The input is represented
reconstruction of the visual appearance of a scene in by v(pj) ={tk(x-y).k = I.. N}. with N=15.
the robot's lab and a coarse depth image for such Each wavelet component is down-sampled to a
scene. 8 x 8 image, so that t'(x, y) has dimension 960.



Figure 8 shows image reconstruction from the sets of A locally afline model was chosen for the mean:
features v(p-) (also denoted image sketch or holistic 13mn.. - (d,,n, Ai,): im.n = d,,,, + ATc. The EM
representation (Torralba, 2003)). algorithm is then used to learn the cluster parame-

ters (see (Gershenfeld, 1999) for a detailed descrip-
tion of the EM algorithm). The number Al of gaus-
sian clusters is selected in order to maximize the join
likelihood of the data. An agglomerative clusteringj approach based on the minimum description length
was implemented to automatically estimate M.

Figure 9 presents results for selection of the atten-
tional focus for several furniture objects. However.

Figure 8: Reconstruction of the original image there is a lot of information that cannot be extracted
(by the inverse Wavelet transform). As suggested from scenes familiar to a robot (real whales are not
by (Torralba, 2003), this corresponds to an holistic rep- common in humanoid research labs). But such infor-
resentation of the scene. mation from the robot's outside world can be. trans-

mitted to the robot by a human tutor using books.
The dimensionality problem is reduced to become

tractable by applying Principal Component Anal-
ysis (PCA). The image features from the wavelet
transformation l(pj) are decomposed into the basis
functions provided by the PCA, encoding the main
spectral characteristics of a scene with a coarse de-
scription of its spatial arrangement. The decom-
position coefficients are obtained by projecting the
image features Vk(PJ)into the principal components
e = {c,, 1 .,...D} (6 denotes the resulting D-
dimensional input vector, used thereafter as input
context features). These coefficients can be viewed M m
as a scene's holistic representation since all the re-
gions of the image contribute to all the coefficients.,
as objects are not encoded individually. The effect Figure 9: Samples of scene images are shown on the first
of neglecting local features is reduced by mapping column. The next four columns show probable locations
the foveal camera (which grabs data for the object based on context for the smaller sofa, the bigger sofa, the
recognition scheme based on local features described table and the chair, respectively. Notice that, even if the
in Section 3.2) into the image from the wide field of object is not visible or present, the system estimates the
view camera, so that the weight of the local features places at which there is a high probability of finding such
is strongly attenuated. The position vector ); is thus object. Two such examples are shown for the chair no
given in wide field of view retinal coordinates, matter the viewing angle, chairs are predicted to appear

The output space is defined by the 6-dimensional in front of the table. It is also shown that. occlusion by
vector X = (qý d. g, 0), where ii is the object's cen- humans do not change significantly the global context.
troid - a 2-dimensional position vector in wide-field
of view retinal coordinates, d is the object's depth.
§* = (w, h) is a vector containing the principal com-
ponents of the ellipse that models the 2D retinal size 5. Learning about the Outside World
of the object, and 0 is the orientation of such ellipse, through Books

A method based on a weighted mixture of gaus-
sians was applied to find interesting places where Children's learning is often aided by the use of audio-
to put a bounded number of local kernels that visuals, and especially books, from social interactions
can model large neighborhoods. Therefore, given with their mother or caregiver during the develop-
the context 46, one needs to evaluate the PDF mental sub-phases of re-approximation and individ-
p(Ylo,, cl from a mixture of m (spherical) Gaus- ual consolidation, and afterwards. Indeed, humans
sians (Gershenfeld, 1999): often paint, draw or just read books to children dur-

M ing their childhood. Books are indeed a useful tool to
p(X, -1o,-) bG.(Y 4 , X )G(, ... C,,,,) teach robots different object representations and to

,= mcommunicate properties of unknown objects to them.

Learning aids are also often used by human care-
The mean #m,. of the Gaussian G. is a function givers to introduce the child to a diverse set of

that depends on e and on a set of parameters 1.... (in)animate objects, exposing the latter to an out-



side world of colors, forms, shapes and contrasts, that statony image Color Segmen•taon Object mask Object Template

otherwise might not be available to a child (such as
images of whales or, as shown by Figure 10, images
of cows). Since these learning aids help to expand
the child's knowledge of the world, they are a po-
tentially useful tool for introducing new informative Prodicity dection:

percepts to a robot.

Actuator Template

Figure 11: The actuator's trajectory is used to extract
P the object's color clusters.

Figure 10: a) Child and human learning from a book. A Therefore, points taken from waving are used to
car template extracted by the robot during an experiment both select and group a set of segmented regions
is shown outlined by a square. b) Extraction of a cow's into the full object. This strategy segments ob-
template image from a book. jects that cannot be moved independently, such as

objects printed in a book, or heavy, stationary ob-
jects such as a table or a sofa. This scheme was

The strategies which enable the robot to learn successfully applied to extract templates for animals
from books rely heavily in human-robot interactions. (many of which might not be visually accessible to
It is essential to have a human in the loop to in- the child from sources other than learning aids), fur-
troduce objects from a book to the robot (as a hu- niture items, musical instruments, fruits, clothes, ge-
man mother/caregiver does to a child), by tapping ometric shapes and other elements from books, under
on their book's representations. Segmentation by varying light conditions (as shown in Figure 12).
demonstration - a human aided object segmentation
algorithm segments an object's image from book 045
pages (or a furniture item from the background), as a -6

follows (Arsenio, 2004b): 0to a=

02

1. A color segmentation algorithm is applied to a 0, tTe,

stationary image 0 A
1 Bear? 2Pear 3-BeS 4 set"nubrr 5 ecket 6 aSleant 7-toaS (04 serm'ete)

2. A human actor waves the arm/hand/finger onl top 1sa2P3104WWW5~e&~MNtlJ4STDS
of the object to be segmented O N

3. The motion of skin-tone pixels is tracked over
a time interval (using the Lucas-Kanade algo-
rithm). The energy per frequency content - using
Short-Time Fourier Transform (STFT) - is deter-
mined for each point's trajectory

4. Periodic, skin-tone points are grouped together
into the arm mask (Arsenio, 2003).

5. The trajectory of the arm's endpoint describes an
algebraic variety over N 2 (N represents the set of
natural numbers). The target object's template Figure 12: Statistical analysis for object segmentation
is given by the union of all bounded subsets (the from books. Templates for several categories of objects
color regions of the stationary image) which in- (for which a representative sample is shown), were ex-
tersect this variety tracted from a collection of children books.

This grouping works by having trajectory points
being used as seed pixels. The algorithm (see Fig- 5.1 Matching Multiple Representations
ure 11) fills the regions of the color segmented image
whose pixel values are closer to the seed pixel values, Object representations acquired from a book are in-
using a 8-connectivity strategy. serted into a database, so that they become avail-



able for future recognition tasks. However, object inspiration towards cognitive development on hu-
descriptions may came in different formats - draw- manoid robots. But to achieve such an endeavor the
ings. paintings, photos, etc. Hence. methods were mother's (and the child's caxegiver) role should not
developed to establish the link between an object be neglected - robots will also benefit from having a
representation in a book and real objects recognized human helping hand that guides them through the
from the surrounding world using the object recog- learning process.
nition technique described in Section 3.2, as shown
by Figure 13. Except for a description contained in a References
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